m-Sparse solutions of linear ordinary differential equations with polynomial coefficients
نویسندگان
چکیده
منابع مشابه
Eventually rational and m-sparse points of linear ordinary differential operators with polynomial coefficients
Let L(y) = 0 be a linear homogeneous ordinary di erential equation with polynomial coefcients. One of the general problems connected with such an equation is to nd all points a (ordinary or singular) and all formal power series ∑∞ n=0 cn(x − a) which satisfy L(y) = 0 and whose coe cient cn — considered as a function of n — has some ‘nice’ properties: for example, cn has an explicit representati...
متن کاملOn Global Non-oscillation of Linear Ordinary Differential Equations with Polynomial Coefficients
Based on a new explicit upper bound for the number of zeros of exponential polynomials in a horizontal strip, we obtain a uniform upper bound for the number of zeros of solutions to an ordinary differential equation near its Fuchsian singular point, provided that any two distinct characteristic exponents at this point have distinct real parts. The latter result implies that a Fuchsian different...
متن کاملSystems of Linear Ordinary Differential Equations with Bounded Coefficients May Have Very Oscillating Solutions
An elementary example shows that the number of zeroes of a component of a solution of a system of linear ordinary differential equations cannot be estimated through the norm of coefficients of the system. Bounds for oscillations. In [1] it was shown that a linear ordinary differential equation of order n, with real analytic coefficients bounded in a neighborhood of the interval [−1, 1], admits ...
متن کاملApproximating Solutions of Linear Ordinary Differential Equations with Periodic Coefficients by Exact Picard Iterates
Linear ordinary differential equations (ODEs) with periodic coefficients appear in various interesting applications, such as determining the linear stability regions of systems of vertically driven multiple pendula. Sinha and Butcher [1, 2] have obtained very good approximations to the solutions of such equations by calculating approximate Picard iterates symbolically in the parameters on which...
متن کاملPuiseux Series Solutions of Ordinary Polynomial Differential Equations : Complexity Study
We prove that the binary complexity of solving ordinary polynomial differential equations in terms of Puiseux series is single exponential in the number of terms in the series. Such a bound was given in 1990 by Grigoriev for Riccatti differential polynomials associated to ordinary linear differential operators. In this paper, we get the same bound for arbitrary differential polynomials. The alg...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Discrete Mathematics
سال: 2000
ISSN: 0012-365X
DOI: 10.1016/s0012-365x(99)00252-6